next up previous contents
suivant: À propos de ce monter: plan précédent: Cas des sources   Table des matières

Bibliographie

Ben Hadid, Hamda et Bernard Roux, ``Thermocapillary convection in long horizontal layers of low-prandtl-number melts subject to a horizontal temperature gradient'', Journal of Fluid Mechanics, 221, 77-103 (1990).

Ben Hadid, Hamda et Bernard Roux, ``Buoyancy- and thermocapillary-driven flows in differentially heated cavities for low-prandtl-number fluids'', Journal of Fluid Mechanics, 235, 1-36 (1992).

Bergé, Pierre (sous la direction de), Le Chaos, théorie et expériences (Eyrolles, Collection du CEA, 1988), ISBN 2-7272-0145-1.

Bot, Patrick, Olivier Cadot et Innocent Mutabazi, ``Secondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor-Dean system'', Physical Review E, 58 (3), 3089-3097 (1998).

Bot, Patrick et Innocent Mutabazi, ``Dynamics of spatio-temporal defects in the Taylor-Dean system'', European Physical Journal B, 13, 141-155 (2000).

Braunsfurth, M.G. et G.M. Homsy, ``Combined thermocapillary-buoyancy convection in a cavity. part ii. an experimental study'', Physic of Fluids, 9 (5) (1997).

Burguete, Javier, Nathalie Mukolobwiez, François Daviaud et Hugues Chaté, ``Bekki-Nozaki amplitude holes in hydrothermal nonlinear waves'', Physical Review Letters, 82 (16) (1999).

Burguete, Javier, Nathalie Mukolobwiez, François Daviaud, Nicolas Garnier et Arnaud Chiffaudel, ``Buoyant-thermocapillary instabilities in an extended liquid layer subjected to a horizontal temperature gradient'', Submitted to Physics of Fluids (2000).

Bye, John A. T., ``Numerical solutions of the steady-state vorticity equation in rectangular basins'', Journal of Fluid Mechanics, 26 (3), 577-598 (1966).

Chandrasekhar, S., Hydrodynamic and hydromagnetic stability (Oxford University Press, 1961), ISBN 0-486-64071-X. Re-ed. Dover 1981.

Chomaz, J-M., ``Absolute and convective instabilities in nonlinear systems'', Physical Review Letters, 69 (13), 1931-1934 (1992).

Chomaz, J.-M., A. Couairon et S. Julien, ``Absolute and convective nature of the Eckhaus and zigzag instability with throughflow'', Physics of Fluids, 11 (11), 3369-3373 (1999).

Chomaz, Jean-Marc et Arnaud Couairon, ``Against the wind'', Physics of Fluids, 11 (10), 2977-2983 (1999).

Couairon, Arnaud, Modes globaux fortement non-linéaires dans les écoulements ouverts, Thèse, Ecole Polytechnique (1997).

Couairon, Arnaud et Jean-Marc Chomaz, ``Primary and secondary nonlinear global instability'', Physica D, 132, 428-456 (1999).

Coullet, P., S. Fauve et E. Tirapegui, ``Large scale instability of non-linear standing waves'', Journal de Physique - Lettres, 46, L787-L791 (1985).

Coullet, P., T. Frisch et F. Plaza, ``Sources and sinks of wave patterns'', Physica D, 62, 75-79 (1993).

Croquette, Vincent, Etude des structures convectives de Rayleigh-Bénard en géométrie étendue, Thèse d'Etat, Université Paris 6 (1986).

Croquette, Vincent et Hugh Williams, ``Nonlinear competition between waves on convective rolls'', Physical Review A, 39 (5), R2765-2768 (1989a).

Croquette, Vincent et Hugh Williams, ``Nonlinear waves of the oscillatory instability on finite convective rolls'', Physica D, 37, 300-314 (1989b).

Cross, M. C., ``Travelling and standing waves in binary-fluid convection in finite geometries'', Physical Review Letters, 57 (23), 2935-2938 (1986).

Cross, M. C., ``Structure of nonlinear travelling-wave states in finite geometries'', Physical Review A, 38, 3593-3600 (1988).

Cross, M. C. et P. C. Hohenberg, ``Pattern formation outside of equilibrium'', Reviews of Modern Physics, 65 (3, part II), 851-1112 (1993).

Cross, M. C. et E.Y. Kuo, ``One dimensional spatial structure near a Hopf bifurcation at finite wavenumber'', Physica D, 59, 90-120 (1992).

Daviaud, François et Jean Marc Vince, ``Traveling waves in a fluid layer subjected to a horizontal temperature gradient'', Physical review E, 48 (6), 4432-4436 (1993).

Davis, Stephen H., ``Thermocapillary instabilities'', Annual Review of Fluid Mechanics, 19, 403-435 (1987).

De Saedeleer, C., A. Garcimartin, G. Chavepeyer, J. K. Platten et G. Lebon , ``The instability of a liquid layer heated from the side when the upper surface is open to air'', Physics of Fluids, 8 (3) (1996).

Dee, G. et J.S. Langer, ``Propagating pattern selection'', Physical Review Letters, 50 (6), 383-386 (1983).

Deissler, Robert J., ``Noise-sustained structure, intermittency, and the Ginzburg-Landau equation'', Journal of Statistical Physics, 40 (3/4), 371-395 (1985).

Deissler, Robert J., ``Spatially growing waves,intermittency, and convective chaos in an open-flow system'', Physica D, 25D, 233-260 (1987).

Deissler, Robert J., ``External noise and the origin and dynamics of structure in convectively unstable systems'', Journal of Statistical Physics, 54 (5/6), 1459-1488 (1989).

Eckhaus, Wiktor et Gérard Iooss, ``Strong selection or rejection of spatially periodic patterns in degenerate bifurcations'', Physica D, 39, 124-146 (1989).

Ezersky, A. B., A. Garcimartin, H. L. Mancini et C. Pérez-Garcia, ``Spatiotemporal structure of hydrothermal waves in marangoni convection'', Physical Review E, 48 (6), 4414-4422 (1993).

Fauve, S., ``Transition vers la turbulence des écoulements convectifs'', Journal de Mécanique théorique et appliquée, . (Numéro spécial), 45-76 (1984).

Fauve, S., ``Large scale instabilities of cellular flows'', in ``Instabilities and Nonequilibrium Structures'', E. Tirapegui et D. Villarroel, eds., 63-88 (D. Reidel Publishing Compagny, 1987).

Favre, Eric, Convection thermocapillaire et thermogravitaire dans un fluide chauffé localement sur sa surface libre, Thèse, Institut National Polytechnique de Grenoble (1997).

Favre, Eric, Laure Blumenfeld et François Daviaud, ``Instabilities of a liquid layer locally heated on its free surface'', Physics of Fluids, 9 (5), 1473-1475 (1997).

Garcimartín, Angel, Nathalie Mukolobwiez et François Daviaud, ``Origin of waves in surface-tension-driven convection'', Physical Review E, 56 (2) (1997).

Garnier, Nicolas et Arnaud Chiffaudel, ``Caractères convectif et absolu de l'instabilité en ondes hydrothermales'', in ``Comptes-rendus de la troisième rencontre du non-linéaire'', R. Ribotta, ed., 233-238 (Editions Paris Onze, 2000a).

Garnier, Nicolas et Arnaud Chiffaudel, ``Non-linear transition to a global mode for traveling-wave instability in a finite box'', Submitted to Physical Review Letters (2000b).

Gershuni, G. Z., P. Laure, V. M. Myznikov, B. Roux et E. M. Zhukhovitsky, ``On the stability of plane-parallel advective flows in long horizontal layers'', Microgravity Quarterly, 2 (3), 141-151 (1992).

Gillon, Pascale et G. M. Homsy, ``Combined thermocapillary-buoyancy convection in a cavity : An experimental study'', Physic of Fluids, 8 (11) (1996).

Gondret, P., P. Ern, L. Meignin et M. Rabaud, ``Experimental evidence of a nonlinear transition from convective to absolute instability'', Physical Review Letters, 82 (7), 1442-1445 (1999).

Guyon, Etienne, Jean-Pierre Hulin et Luc Petit, Hydrodynamique Physique (InterEditions, Editions du CNRS, 1991), ISBN 2-222-04025-6.

Huerre, Patrick, ``On the absolute/convective nature of primary and secondary instabilities'', in ``Propagation in systems far from equiibrium'', J.E. Weisfreid, H.R. Brand, P. Manneville, G. Albinet et N. Boccara, eds., volume 41 of Springer Series in Synergetics, 340-353 (Springer Verlag, 1988).

Huerre, Patrick et Peter A. Monkewitz, ``Local and global instabilities in spatially developing flows'', Annual Review of Fluid Mechanics, 22, 473-537 (1990).

Janiaud, Béatrice, Alain Pumir, David Bensimon, Vincent Croquette, Helga Richter et Lorenz Kramer, ``The Eckhaus instability for traveling waves'', Physica D, 55, 269-286 (1992).

Jenkins, D. R., ``Interpretation of shadowgraph patterns in Rayleigh-Bénard convection'', Journal of Fluid Mechanics, 190, 451-469 (1988).

Kamotani, Y., J. H. Lee et S. Ostrach, ``An experimental evidence of oscillatory thermocapillary convection in cylindrical containers'', Physic of Fluids A, 4 (5) (1992).

Knobloch, E. et J. De Luca, ``Amplitude equations for travelling wave convection'', Nonlinearity, 3, 975-980 (1990).

Kolodner, Paul et Hugh Williams, ``Complex demodulation techniques for experiments on traveling-waves convection'', in ``Nonlinear evolution of spatio-temporal structures in dissipative continuous systems'', F. H. Busse et L. Kramer, eds., 73-91 (Plenum Press, New York, 1990).

Laure, Patrice et Innocent Mutabazi, ``Nonlinear analysis of instability modes in the Taylor-Dean system'', Physics of Fluids, 6 (11), 3630-3642 (1994).

Laure, Patrice et B. Roux, ``Linear and nonlinear analysis of the Hadley circulation'', Journal of Crystal Growth, 97, 226-234 (1989).

Laure, Patrice, B. Roux et H. Ben Hadid, ``Nonlinear study of the flow in a long rectangular cavity subjected to thermocapillary effect'', Physics of Fluids A, 2 (4), 516-524 (1990).

Lega, J., B. Janiaud, S. Jucquois et V. Croquette, ``Localized phase jumps in wave trains'', Physical Review A, 45 (8), 5596-5604 (1992).

Lega, J., J. V. Moloney et A. C. Newell, ``Swift-Hohenberg equation for lasers'', Physical Review Letters, 73 (22), R2978-2981 (1994).

Mancho, A. M. et H. Herrero, ``Instabilities laterally heated liquid layers'', Physics of Fluids, 12 (9), 1044-1051 (2000).

Matkowsky, B. J. et V. Volpert, ``Stability of plane wave solutions of complex Ginzburg-Landau equations'', Quarterly of Applied Mathematics, LI (2), 265-281 (1993).

Mercier, J-F. et C. Normand, ``Influence of the Prandtl number on the location of recirculation eddies in thermocapillary flows'', Int. J. of Heat and Mass Transfer. Submitted (2000).

Mercier, Jean-François, Instabilités d'écoulements thermocapillaires et de thermogravité, Thèse de doctorat, Université Paris 6 (1997).

Mercier, Jean-François et Christiane Normand, ``Buoyant-thermocapillary instabilities of differentially heated liquid layers'', Physics of Fluids, 8 (6), 1433-1445 (1996).

Merzkirch, Wolfgang, Flow visualization, second edition (Academic Press, 1987), ISBN 0-12-491351-2.

Mukolobwiez, Nathalie, Etude de systèmes d'ondes propagatives dans des écoulements thermogravitaires et thermocapillaires, Thèse, Université Paris 11 (1998).

Mukolobwiez, Nathalie, Arnaud Chiffaudel et François Daviaud, ``Supercritical Eckhaus instability for surface-tension-driven hydrothermal waves'', Physical Review Letters, 80 (21), 4661-4664 (1998).

Müller, Hanns Walter et Morten Tveitereid, ``Absolute and convective nature of the Eckhaus and zigzag instability'', Physical Review Letters, 74 (9), 1582-1585 (1995).

Neufeld, M., D. Walgraef et M. San Miguel, ``Noise-sustained structures in coupled complex Ginzburg-Landau equations for a convectively unstable system'', Physical Review E, 54 (6), 6344-6355 (1996).

Newell, Alan C. et J.A. Whitehead, ``Finite bandwidth, finite amplitude convection'', Journal of Fluid Mechanics, 38 (part 2), 279-303 (1969).

Parmentier, Patrice M., Vincent C. Regnier et Georgy Lebon, ``Buoyant-thermocapillary instabilities in medium-prandtl-number fluid layers subject to a horizontal temperature gradient'', International Journal of Heat and Mass Transfer, 36 (9), 2417-2427 (1993).

Pearson, J. R. A., ``On convection cells induced by surface tension'', Journal of Fluid Mechanics, 19, 489-500 (1958).

Pelacho, Miguel Angel et Javier Burguete, ``Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection'', Physical Review E, 59 (1), 835-840 (1999).

Pocheau, Alain, Structures spatiales et turbulence de phase en convection de Rayleigh-Bénard, Thèse d'Etat, Université Paris 6 (1987).

Priede, Janis et Gunter Gerbeth, ``Convective, absolute, and global instabilities of thermocapillary-buoyancy convection in extended layers'', Physical Review E, 56 (4), 4187-4199 (1997a).

Priede, Janis et Gunter Gerbeth, ``Influence of thermal boundary conditions on the stability of thermocapillary-driven convection at low prandtl numbers'', Physics of Fluids, 9 (6), 1621-1634 (1997b).

Riley, R. J. et G. P. Neitzel, ``Instability of thermocapillary-buoyancy convection in shallow layers. part 1. characterization of steady and oscillatory instabilities'', Journal of Fluid Mechanics, 359, 143-164 (1998).

Rovinsky, Malevanets et Menzinger, ``Differential flow instability in the Ginzburg-Landau and Swift-Hohenberg approximations'', Physica D, 95, 306-318 (1996).

Schouveiler, L., P. Le Gal et M. P. Chauve, ``Stability of a traveling roll system in a rotating disk flow'', Physics of Fluids, 11, 2695-2697 (1998).

Schwabe, D., U. Möller, J.Schneider et A.Scharmann, ``Instabilities of shallow dynamic thermocapillary liquid layers'', Physic of Fluids A, 4 (11), 2368-2381 (1992).

Segel, Lee A., ``Distant side-walls cause slow amplitude modulation of cellular convection'', Journal of Fluid Mechanics, 38 (part 1), 203-224 (1969).

Sen, Asok K. et Stephen H. Davis, ``Steady thermocapillary flows in two dimensional slots'', Journal of Fluid Mechanics, 121, 163-186 (1982).

Smith, Marc K., ``Instability mechanisms in dynamic thermocapillary liquid layers'', Physics of Fluids, 29 (10), 3182-3186 (1986).

Smith, Marc K., ``The nonlinear stability of dynamic thermocapillary liquid layers'', Journal of Fluid Mechanics, 194, 391-415 (1988).

Smith, Marc K. et Stephen H. Davis, ``Instabilities of dynamic thermocapillary liquid layers. part 1. convective instabilities'', Journal of Fluid Mechanics, 132, 119-144 (1983a).

Smith, Marc K. et Stephen H. Davis, ``Instabilities of dynamic thermocapillary liquid layers. part 2. surface-wave instabilities'', Journal of Fluid Mechanics, 132, 145-162 (1983b).

Strani, M., R. Piva et G. Graziani, ``Thermocapillary convection in a rectangular cavity : asymptotic theory and numerical simulations'', Journal of Fluid Mechanics, 130, 347-376 (1983).

Swift, J. et P. C. Hohenberg, ``Hydrodynamic fluctuations at the convective instability'', Physical Review A, 15 (1), 319-328 (1977).

Tagg, Randall, W. Stuart Edwards et Harry L. Swinney, ``Convective versus absolute instability in flow between counterrotating cylinders'', Physical Review A, 42 (2), 831-837 (1990).

Tobias, S. M., M. R. E. Proctor et E. Knobloch, ``Convective and absolute instabilities of fluid flows in finite geometry'', Physica D, 113, 43-72 (1998).

Tuckerman, Laurette S. et Dwight Barkley, ``Bifurcation analysis of the Eckhaus instability'', Physica D, 46, 57-86 (1990).

van Saarloos, Wim, ``Front propagation into unstable states : Marginal stability as a dynamical mechanism for velocity selection'', Physical Review A, 37 (1), 211 (1988).

Villers, D. et J. K. Platten, ``Coupled buoyancy and Marangoni convection in acetone: experiments and comparison with numerical simulations'', Journal of Fluid Mechanics, 234, 487-510 (1992).

Vince, Jean Marc, Ondes propagatives dans des systèmes convectifs soumis à des effets de tension superficielle, Thèse, Université Paris 7 (1994).

Vrane, David R. et Marc K. Smith, ``The influence of domain curvature on the stability of viscously-dominated thermocapillary flows'', in ``Advances in multi-fluid flows'', Y. Renardy, A. Coward, D. Papageorgiore et S.-M. Sun, eds., 219-238 (1996).

Ondes non-linéaires à une et deux dimensions
dans une mince couche de fluide

Résumé
Les ondes hydrothermales constituent un système modèle d'ondes non-linéaires dont nous étudions expérimentalement la transition vers le chaos spatio-temporel. A une dimension d'espace, par comparaison entre une cellule annulaire périodique et une cellule rectangulaire de taille finie, nous montrons que l'instabilité primaire en ondes ne survient dans ce dernier cas que lorsque la transition convectif /absolu est franchie. Nous isolons de même pour l'instabilité secondaire d'Eckhaus les régimes d'instabilité convective et absolue. A deux dimensions d'espace dans une cellule cylindrique, nous étudions la structuration de l'écoulement de base en rouleaux corotatifs, puis les différents modes d'instabilités en fonction de la différence de température appliquée et de la hauteur de fluide : spirales d'Archimède, cibles, fleurs et rayons apparaissent chacuns par bifurcation de Hopf supercritique. Deux modes d'ondes hydrothermales sont alors distingués. Nous tentons d'expliquer l'existence de ces deux modes différents par une étude théorique et numérique : nous quantifions les effets de la courbure sur les instabilités à deux dimensions.


One and two-dimensionnal non-linear waves
in a thin liquid layer

Abstract
Hydrothermal waves constitute an ideal non-linear waves system which we are studying experimentaly the transition to spatio-temporal chaos. When the system is unidimensional, we compare an annular cell and a rectangular cell of finite extent and show that the primary instability into travelling waves occurs in the rectangular case only when the convective/absolute threshold is reached. With the same arguments, we distinguish two regimes for Eckhaus secondary instability in finite geometry : a convective and an absolute one. When the system is two-dimensional and the geometry is cylindrical, we study first the basic flow structuration, then the different instability modes depending on fluid depth and temperature difference across the cell : Archimedean spirals, targets, flowers and radial lines each appear through a supercritical Hopf bifurcation. Two hydrothermal waves modes are isoled. We present a theoretical and numerical study of the curvature effects in the two-dimensional geometry which may explain some of the differences between the two modes.


next up previous contents
suivant: À propos de ce monter: plan précédent: Cas des sources   Table des matières
Nicolas Garnier - Thèse de doctorat